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Abstract— With an efficient network of taskable robot agents,
Multi-Robot Systems (MRS) have brought value addition in
diverse domains like logistics, cargo management, and agricul-
ture. In this work, we propose the use of a modular network-
robot co-simulation framework CORNET 2.0, which is agnostic
to the application middleware and hence can support diverse
automation solutions in simulation. We showcase the benefits
of such a co-simulation framework to evaluate a network-
aware proactive collision avoidance approach in a multi-robot
navigation scenario in which a robot’s footprint is relayed over
a network to all the other robots in the ego robot’s network
visibility. This allows all robots to proactively avoid each other,
resulting in a higher average task execution efficiency and
minimizing collisions under favourable network conditions.

I. INTRODUCTION

The fourth industrial revolution, the Industry 4.0 [1] initia-
tive, is poised to happen globally, connecting modern control
systems via the Internet of things (IoT). The convergence of
network technology and operational technology enables new
ways of production, value creation, automation, and real-time
optimization. On top of that, the COVID-19 pandemic has
accelerated the growth of the e-commerce industry unprece-
dentedly, creating a massive logistical challenge for ware-
house and supply chain management. The growing demand
for higher warehouse throughput and a smaller workforce has
expedited the requirement of robot operations. The projected
growth in the number of robotic warehousing units in 2021
is 15× that reported in 2016 [2].

As illustrated in Fig. 1, a typical warehouse facility
using multiple robots requires a reliable and robust system
for communication and cooperation. Development and real-
world deployment of Multi-Robot Systems (MRS) poses sev-
eral challenging problems, including but not limited to task
allocation [3], task execution [4], path planning [5], coordi-
nation [6], localization [7], and swarming [8]. In addition,
some of the application-specific solutions and algorithms
for MRS, such as patrolling algorithms [9], map-merging
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Fig. 1: Networked Warehouse Automation

[10], and flocking [11], have attracted much interest from
research communities. In all these problems, coordination
using communication channels forms an essential backbone.
This requirement is the primary motivation for the contribu-
tions in this paper.

When benchmarking MRS, realistic simulations have
many advantages over experimental trials with actual robots.
The simulations are reproducible and faster to deploy, en-
abling a broader range of evaluations using different settings,
e.g., fleet sizes, environments, and robot types. However,
the simulation must take into account both the physical
environment and the network infrastructure as both affect
planning operations. In this paper, we showcase a network
and robot co-simulation framework (CORNET 2.0). The co-
simulation framework enables planning and restructuring of
the networking and the automation infrastructure iteratively
in simulation. Once the desired automation is realized and
thoroughly tested in simulation, a real-world deployment of
the best-performing configurations can be considered, which
will be highly cost-effective. To demonstrate this framework,
we evaluate network enabled collision avoidance approach
for MRS operations for a warehouse use-case.

The main contributions of this paper are as follows:
1) We demonstrate the evaluation of a multi-robot task

execution approach with proactive collision avoidance.
2) We showcase the use of CORNET 2.0, a multi-agent

network-robot co-simulation framework agnostic to
robot’s middleware, for prototyping and validating the
algorithms.

3) We evaluate the effects of proactive collision avoidance
using CORNET 2.0 and report results.

Our design and evaluation are based on a warehouse



automation use-case with a series of pickup and delivery
navigation tasks using a fleet of mobile robots.

II. RELATED WORK

In recent years there has been much work in MRS to
leverage the network infrastructure in domains like task allo-
cation [12]–[15], state estimation and data fusion [16], local-
ization [17], and data sharing among multiple robots [18]. As
regards network-aware path planning, [19] aims to solve the
coordinated sensor fusion problem where mutual information
between multi robots is coordinated over packet erasure
channels. And path planning is used to increase the efficiency
in terms of information collected. On the other hand, [20]
addresses the offline path planning problem to maximize the
communication quality.

In the domain of optimising path planning algorithm
leveraging communication, most of the research focus is
on path planning under communication constrained [21],
[22] and unreliable networks [23], [24]. Well-structured and
semi-structured domains such as logistics and cargo man-
agement will have a reliable and high-performance network
infrastructure at their disposal. In this context, Luna and
Bekris [25] leverage a communication network to opti-
mize the path planning algorithms for MRS. Their work
formulates the problem of computing paths for the robots
within the communication range but this requires very high
computation (Parallel computing cluster made of Sun Fire
X4100 M2 Nodes, and 25 to 64 such nodes are required).
We evaluate a simpler decentralized networked collision
avoidance approach in Section IV-B. We also evaluate this
new paradigm of network-aware algorithms using a multi-
agent network-enabled robot prototyping platform.

The fundamental scope of robot simulators like
Gazebo [26], AirSim [27], Carla [28], and open-source
frameworks like SUMO [29] alongside middlewares like
ROS1 and ROS2, is to model the robot’s physical dynamics.
On the other hand, network simulators, NS-3 [30], mininet-
WiFi [31], and OMNET++ [32] are driving the innovations
in mobile ad hoc networks, providing insights into large
networks. Besides the physical interaction of the robots
with the environment, information sharing is key to best
exploit a multi-robot system’s capabilities. However, both
of these classes of simulators, by design, ignore or simplify
the other component and hence suffer the repercussions of
ill-representing reality.

As a naı̈ve approach, we can capture traces from a network
simulation and introduce them into the robot simulations. But
for a realistic simulation of multi-robot systems, we need
to close the perception–action loop over a communication
channel, and this warrants that the simulation has to be
performed in conjunction. There have been recent efforts on
joint network-robot simulation [33]–[36]. These are designed
to be application-specific and suffer from a siloed approach.
In this context, other frameworks [37], [38] provide a more
generalized approach. [37] does not offer a proper packet
capture mechanism, and [38] has close coupling with ROS
middleware for inter-robot communication.

Fig. 2: CORNET 2.0: Architecture overview

III. BACKGROUND: CORNET 2.0

Fig. 2 provides an overview of the CORNET 2.0 frame-
work we use in our evaluation. It uses mininet-WiFi with
Containernet support [31] for modeling network interactions,
and Gazebo [26] simulation engine for realising the physical
interactions. This middleware addresses our key requirement
of seamlessly interconnecting the two simulation platforms
to ensure the correctness of the simulation.

CORNET 2.0 consists of two components:
• A veth based end-to-end data-plane
• A position and time synchronization control plane

a) End-to-end data-plane: Each robot runs a full-
featured IP-aware networked operating system, as shown
in Fig. 2. The primary function of the data-plane is to
create an end-to-end data path using a virtual network (e.g.,
mininet-WiFi) between the robot nodes simulated in the
physics simulator (e.g., Gazebo), irrespective of the network
topology. For every robot instance in the Gazebo simulation,
a corresponding network host is created, and mininet-WiFi
places the host process in different Linux OS network
namespaces, connecting them through virtual Ethernet pairs
and creating a virtual network topology. The host interfaces
allow the configuration of parameters for controlling rate,
delay, latency, jitter and loss to represent higher fidelity. The
application nodes bind sockets to these virtual interfaces
and communicate over them. This traffic gets redirected
through the virtual network created in the mininet-WiFi and
is released to the appropriate node based on the network
parameters. This process is entirely transparent to the choice
of the application middleware. For the purpose of our exper-
iments, we use ROS2 as the application middleware.

b) Mobility and time synchronization: The co-
simulation control plane captures the state and time infor-
mation of the robots in a synchronized manner, ensuring the
simulation’s correctness. Each robot’s state information is
captured regardless of the choice of the user middleware
application and updates the mobility of the corresponding
nodes in the network simulator.



Fig. 3: CORNET 2.0: Design Specifics

By design, physics simulators are modeled as continuous-
time dynamics systems. In contrast, network simulators
employ the discrete-event model, where the state of the
simulation switches based on events such as packet transmis-
sion and reception without a constant time-step. It is crucial
to bridge the border that separates the cyber and physical
parts of the system for a faithful representation of the co-
simulation.

We have used Gazebo simulation time as the reference
clock. As shown in Fig. 3, when the robot entity in the
physics simulator releases the packet to CORNET 2.0 mid-
dleware, the message is time-stamped (t1) and passed on to
the network layer. The network simulator simulates network
artifacts, induces a network delay (∆t), and releases the
packet to the CORNET 2.0 which keeps track of current
physics simulator time (t2).

• If (t2− t1) < ∆t, the network simulator event process-
ing is faster than the physic simulator. So the CORNET
middleware holds the message for (∆t − (t2 − t1))
interval before releasing packet to the physics simulator.

• If (t2− t1) > ∆t, the network simulator event process-
ing is slower than physics simulation. In such cases, we
discard the packet as it has missed the deadline.

Due to space restrictions, we refer the reader to the
supplementary materials for this paper [39] for additional
details and performance analysis of CORNET 2.0.

IV. NETWORK AWARE MULTI-ROBOT TASK EXECUTION

Using our framework we study a Multi-Robot Task Execu-
tion activity, which consists of two steps – Non-Networked
Multi-Robot Task Allocation (MRTA) and Multi-Robot Path
Planning (MRPP) using network information.

A. Multi-Robot Task Allocation

We consider the class of problems characterized by tasks
that a single robot can execute at a time (SR), and robots
that can execute only a single task at the time (ST). We also
consider instantaneous assignment (IA) of tasks to robots, as

the arrival of further tasks is not available and unpredictable
[40], [41]. We have leveraged a market auction-based MRTA
algorithm inspired by [3]. In our implementation, each allo-
cated task can be decomposed into a single or several goal
locations, unlike [3], where they have used a fixed definition
of task that comprises three goals. This allows flexibility in
terms of types of tasks that can be executed. We define the
cost function for the robot traveling between two goals gi
and gf as G(gi, gf ).

Let ti and tj be two tasks defined as ti =
[gi0, gi1, gi2, ..., giM ] and tf = [gf0, gf1, gf2, ..., gfN ].
Therefore we modify the own cost function (S(ti)) of a task
ti and the associated cost function (R(ti, tj)) between ti and
tj as defined in [3], as:

S(ti) =

M−1∑
k=1

G(gik, gi(k+1))

R(ti, tf ) = G(giM , gf0)

(1)

For ease of discussion, we model the warehouse site as a
rasterized rectangle but with the freedom to move diagonally;
hence eight directions of movement are allowed, which helps
us model the robots’ movements efficiently. In contrast to
using the Manhattan distance [3], we instead use G(gi, gf )
as the Octile Distance (Manhattan distance extended to allow
diagonal moves) between the two goals in free space, which
serves as the notional cost of the actual path.

B. Multi-Robot Path Planning (MRPP)

In reactive planning, the robots navigate and avoid dy-
namic obstacles based only on their sensor data, which
directly implies a shorter time horizon available for avoiding
the obstacles. On the other hand, proactive planning is where
the robots plan well ahead in their path, considering the static
and dynamic obstacles.

A high performance network will allow for realizing
a distributed planner, which can in principle scale much
better in terms of the number of robots. Hence we study
a decentralized planning approach that provides proactive
collision avoidance by utilising state information passed from
one robot to another over the network infrastructure. This
approach consists of two components - a global planner, and
costmap updates using state information of other robots. For
the global planner, we have used Navfn planner in NAV2
[42] which acts as a decentralised single agent path planner.

For updating the robot’s costmap, we have designed a
method to relay the robot’s footprint over the network to all
the other robots in the ego robot’s neighbourhood1. These
footprints can also act as corrective measures for errors in
measurements by low-range obstacle detecting sensors.

Two robots are considered to be neighbours if they are
connected to the same access point. However different
neighbourhood functions can be realized by appropriately
modifying the filter function in Fig. 5

1The term ego is used for the current robot whose motion is being
considered.



(a) Non-Network case - Robot 1 (b) Non-Network case - Robot 2

(c) Network case - Robot 1 (d) Network case - Robot 2

Fig. 4: In both the non-network and the network cases, the robots cannot detect each other solely using lidar measurements.
So in the non-network case, two robots plan their global trajectory through each other. In the network case, they can
proactively plan a path avoiding other robots based on the footprints of other robots received over the network.

The knowledge of other robots’ footprints in the network
neighborhood of the ego robot helps it avoid collisions proac-
tively, and this increases the system’s overall performance in
terms of:

1) the average time the robots take to complete the
assigned tasks

2) reducing the number of collisions, and probability of
using the emergency obstacle avoidance maneuver

• This is measured using the minimum non-collision
distance (MNCD) metric. It is defined as the
minimum distance in the case of non-colliding
interactions between robots.

• Interactions are defined as two robots coming close
to each other, within a certain distance threshold.

In our experiments, we have kept that threshold at 2m
since that is the range of the lidar on-board our robots.

There are many applications of proactive planning, and it
is beneficial in cases where reactive planning has a higher
probability of failing:

1) In the case of low-range lidar which are cost-effective,
robots rely only on reactive planning, which in turn
means that the chances of collision are high.

2) In Fig. 4, the robots 1 and 2 have planned paths around
the corner and are on a collision course. Here, reactive
planning in Figs. 4a and 4b may not have enough time
to avert the situation as the lidar cannot detect the other
robot around the corner, while proactive planning in
Figs. 4c and 4d is able to detect and avoid the other
robot.

3) In reactive planning, the robot’s threshold on the max
velocity depends on the lidar range for safe navigation
and collision avoidance. Proactive planning helps in-
crease this threshold as the robot is already aware of

the position of the other robots.

V. ARCHITECTURE AND MESSAGE FLOW

This section elaborates on each component of our proac-
tive planning approach along with the message flow. As
shown in Fig. 5, the orders are dispatched to the task
allocator module to convert them into robot tasks. Based
on the MRTA algorithm discussed in Section IV-A once
a robot is selected to execute this task, the corresponding
task is transferred to the respective robot node. These robot
nodes act as intermediary nodes between the task allocator
and the navigation stack of a robot and have the following
responsibilities:

1) keep track of the list of tasks allocated to a robot
2) sequentially send the current task’s goals to the way-

point follower of the navigation stack
3) retrieve the feedback about the current task from the

navigation stack, and update the local and central list
of tasks allocated to that robot.

Using CORNET 2.0, a network topology is generated
to have a coverage span of the entire warehouse, and the
network node is in sync with the robot node in the Gazebo
environment. In each robot’s network node, we run a simple
ping server that generates the ping status of all the other
participating robots and publishes this ping status array from
each robot to the footprint filter node.

The footprint filter subscribes to all the published foot-
prints along with the ping array from the robot’s ping server
and creates a 2-D Boolean array whose ith row shows the
network visibility of other robots with respect to the ith robot.
Therefore, the ith robot’s footprint filter only publishes the
footprint of the robots which are in the network visibility of
the ith robot.



Fig. 5: Architecture and message flow diagram

The obstacle layer2 of the robot’s navigation stack sub-
scribes to the filtered footprints to update the robot’s cost-
map accordingly. The navigation stack sends the velocity
control commands to the robots in Gazebo.

VI. EXPERIMENTAL SETUP

We define the following two cases for each experiment
that we perform:

1) Multi-robot task execution without using a network.
This is referred to as the non-network case from
hereon.

2) Multi-robot task execution using the network. This is
referred to as the network case from hereon. For these
experiments, we assume that an infrastructure-assisted
WiFi network is available with coverage of the whole
warehouse.

We use ROS2 as our communication middleware.
NAV2 [42] has been used as the navigation stack. We use
CORNET 2.0 for the end-to-end simulation. For the exact
environment, we used a small warehouse world provided by
AWS robotics (Fig. 6). While the robots are positioned inside
the centre squares, the shelves on the right-hand side act as
pickup stations where cargo is picked up from by the robot.
The racks on the left-hand side act as delivery stations and
cargo has to be delivered here by the robots.

We perform the following experiments,
1) Changing the number of robots in the environment

while we kept the max velocity of the robots fixed,
at 1.6m/s

2) The maximum allowed velocity is varied for a fixed
number of robots, 4 in this case.

For these experiments, we consider that robots possess
only a 2m lidar to detect the obstacles. Also for both
experiments, we allocate four tasks to each robot for a
sufficient comparison.

2We have used a custom implementation of obstacle layer plugin provided
with the Costmap-2D.[42]

Fig. 6: AWS Small Warehouse World in Gazebo

Fig. 7: Number of collisions when the Number of Robots is
varied

VII. RESULTS

Fig. 7 reports the number of collisions that occur between
the robots for the non-network and network cases, as the
number of operating robots increase from 4 to 7. From
this we can conclude that the number of collisions in the
network case is much lower than in the non-network case.
In the network case, the robots can proactively avoid the
obstacles using information shared over the network as the
collision avoidance time horizon is higher. Hence, the change
in velocity required to avoid the obstacle is much less than
reactive avoidance. Consequently, this also increases the
robots’ average velocity, as shown in Fig. 8.

When two robots collide, there is a high probability of
the robots becoming unstable and detecting the floor as an
obstacle, which leads them to replan or go into recovery
mechanism. This result in a longer path, which increases the
overall distance traveled to complete the tasks. In network
cases, as the number of collisions is less, the number of times
the recovery mechanisms is triggered in lowered. This leads
to a decrease in the total distance traveled by the system.
Conversely, as the number of robots increases, there is also
a chance that the robot would take a longer path to avoid
the other robots proactively and hence even if collisions are
less, there might be an increase in the total distance traveled
by the system. This was the case for the setup involving
seven robots, shown in Fig. 9. The total distance traveled is
slightly higher in the network case as a trade-off for avoiding
collisions.



Fig. 8: Average Velocity of Robots when the Number of
Robots is varied

Fig. 9: Total Distance travelled by Robots when the Number
of Robots is varied

Fig. 10 compares the non-network and network cases when
the maximum allowed velocity of the robots is increased. It
illustrates two trends:

• As the maximum velocity increases, the minimum
non-collision distance (MNCD) decreases both in the
network and the non-network cases because of lesser
reaction time for collision avoidance.

• For every value of maximum velocity, the MNCD
is higher in the network case compared to the non-
network case, illustrating that there is a higher collision
avoidance time horizon for the network case.

There are some interactions between robots that lead
to collisions even in the network case. These are when
the robots tend to go in the same direction for proactive
avoidance, and hence they still collide. Future works can
ensure a better or complete collision avoidance where the
global trajectories resolve all conflicts. A conflict is defined
as when two robots go in the same direction to avoid each
other. While this can ensure better collision avoidance, it
would also require higher compute effort [25].

VIII. DISCUSSION AND CONCLUSIONS

This paper describes the benefits of having a simulation
infrastructure to research and develop solutions in the field

Fig. 10: Analysis by varying Max. Allowed Velocity

of networked robotics. In particular, we leverage a network-
robot co-simulation framework, CORNET 2.0, which is
agnostic to middleware. With the rapid progress in both net-
working technologies such as WiFi6 and 5G, the availability
of such frameworks will hold the key for rapid prototyping
of network-aware robot automation.

We use this framework in the context of a basic Industry
4.0 use-case of a multi-robot task execution in a warehouse
environment. We show proactive collision detection and
avoidance in areas of less on-board sensor visibility, such as
alleyway crossings and corners. These results underline how
such a framework allows one to evaluate metrics impacting
throughput in a networked warehouse automation context
where a traditional non-networked automation relying solely
on on-board sensors would not suffice. Such evaluations in
turn enable making key assessments from a resource logistics
perspective too.

The middleware-agnostic nature of CORNET 2.0 enables
easy integration of network infrastructure aspects to an
already existing robotic automation simulation. The frame-
work also provides avenues to evaluate network specific
characteristics such as channel and packet loss, planning
for network coverage in a given area with minimal or no
blind spots and so forth. We strongly believe that these
characteristics are essential to accelerate further research and
development in network-aware behavioral design solutions in
robotic automation.
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